Game 66: September 11, 2015the Initials Game

  1. Game 66: September 11 2015 The Initials Game Show
  2. Game 66: September 11 2015 The Initials Games

A few months ago, I found myself in my attic at 11 p.m., tearing through boxes marked with Jeff’s initials, looking for a button-down shirt and tie for my 15-year-old daughter, Maggie. The last time MeatSauce was shutout was Game 223: September 28, 2018, almost 2 years ago. For Hawkey, it was Game 259: June 7, 2019. That was the 3rd Initials Game ever where only 2 people scored a point. The other games were Game 61 and Game 126. It was also the second time the initials R.G. Have been used, the last was in Game 18. Get a recap of the Buffalo Bills vs. Baltimore Ravens football game. Skip to navigation. He was 15 of 22 for only 111 yards and ran five times for 11 yards. Took a pass in stride and pulled. Gauntlet is a 1985 fantasy-themed hack and slash arcade game by Atari Games. It is noted as being one of the first multiplayer dungeon crawl arcade games. The core design of Gauntlet comes from Dandy, a 1983 Atari 8-bit family dungeon crawl, which resulted in a threat of legal action. The questions are packed with riddles and brain teasers on history, current affairs, popular culture, geography, science, arts and more. So think hard and have fun being at your Wit's End! Play as individuals or in teams. Includes game cards, large game board, playing pieces, die, and instruction sheet.

Initials: T.B.
Host: Cory Cove
Players: Chris Hawkey, Paul Lambert, AJ Mansour, Mark Parrish

1Tennis BallPaul Lambert5Mark Parrish
AJ Mansour
2Teddy BridgewaterChris Hawkey3Paul Lambert
3Tampa BayAJ Mansour4
4True BloodAJ Mansour5Mark Parrish
5Teddy BrewskiAJ Mansour4Paul Lambert
6Ty BurrellMark Parrish6
7The BoogeymanMark Parrish5Chris Hawkey
8Taco BellPaul Lambert1
9Tinker BellPaul Lambert3
10Todd Bowles(Stumped)6Chris Hawkey
Paul Lambert (BF)
Mark Parrish
AJ Mansour
11Tommy BoyAJ Mansour2
12Ted BundyPaul Lambert3Mark Parrish
TBTerrell BrandonPaul Lambert3
1Paul Lambert53121
2AJ Mansour421
3Mark Parrish24
4Chris Hawkey121
Notes & Quotes
New rule: Tiebreakers now feature three clues (instead of only one, as before).
“Terry Bradshaw” was guessed one three times (twice by Meatsauce). “Teddy Bear” was guessed twice.
Cory: “A lot of shoutouts this week on Initials. This kind of sucks.”
Cory: “Is toothbrush one word? I believe it is.”
Sauce: “Your mom is one word.”
Cory: “Your mom is two words.”
Sauce: “Oh.”
Hawk: “Go with your gut.”
Sauce: “He has a cute one.”
[Random spit take.]
Sauce: “He does!”
Cory, to Sauce: “I’ve never known you to not pull it.”
Sauce: “That’s very nice of you, Cory. That’s the nicest thing you’ve said.”
Cory: “ if you want to watch Meatsauce mime a saxophone player.”
Sauce: “Yeah, but here’s the thing: Remember on Monday who lost their own game? Cory. Can it.”
Hawk: “Who’s Cory Can-it?”
After Sauce guessed “Taco Bell” with only one clue…
Cory: “Holy crap.”
Hawk: “Oh come on, like he doesn’t know that.”
Parrish: “This is so rigged, Cory! Come on!”
Cory (in Sauce-voice): “We celebrated the 40th anniversary just a couple weeks ago. I remember where I was!”
Sauce: “I might be having that three times this week.”
Cory: “How quickly we forget Todd Bowles.”
Sauce: “Dang it! Good ol’ T-O-Double D … That’s Todd.”

[Stats legend]

The predictive forecasts generated by SAP Analytics Cloud Predictive Planning are obtained from the analysis of the historical values of the variable to predict. This blog explains how predictive forecasts can be improved if there is a data context (I mean candidate influencers) around the variable to predict. The accuracy measured by the Horizon-Wide MAPE (see blog) of the predictive model can be better. The smaller it is, the more accurate the predictive forecasts are. Introducing a data context may also influence the characterization of the trend and of the cycle which will be more precise.

Today, SAP Analytics Cloud Predictive Planning does not take influencer variables into account. The goal of this blog is to explain how to use influencer variables to try to improve predictive forecasts and include them in the planning process.

Let me start from a planning model. I then call SAP Predictive Planning to create a predictive model and to get predictive forecasts. The predictive model and the predictive forecasts will be saved in the planning model. Then I create another predictive model that considers influencer variables. I compare these two predictive models and choose the one which provides the most accurate predictive forecasts. Finally, I show how to save these predictive forecasts into the planning process.

I illustrate my explanations using a bike rental example. The goal is to plan daily hires of bicycle rental in London. To do this I have historical data from 2011 to 20th September 2015. The table below shows for each day the number of bikes hired.

Fig 1: Planning model

Then I run SAP Predictive Planning from the planning model LondonBikeHire_Extended to get ten predictive forecasts from September 11th to September 20th 2015. So, I can compare actual values of the number of bikes hired with the predictive forecasts.

The predictive model I get has a HW-MAPE of 19.74%. In the figure below, only a linear trend and fluctuations are detected. However, there are no recurring cycles detected.

Fig 2: Decomposition of the evolution of number of bikes hired

This predictive model gives the forecasts shown below.

Fig 3: Predictive forecasts

The difference between the Error Max and the Error Min is the confidence interval. On average it is 23,314. It indicates how precise the predictive forecasts are. Now I save these predictive forecasts in a private version of the planning model.

I display actuals & forecasts side by side in a table. I filter on the predicted dates to focus on the comparison between the predictive forecasts for September and the actual values of the hire of bikes. The difference between these values between September 11th and September 20th is on average 11.46%.

Fig 4: Planning with predictive forecasts

Even if these predictive forecasts are accurate, I am not completely satisfied with them, because I feel that I have not used all the information I have. Since the beginning, I have recorded other information like:

  • Calendar information (index of the day in the month, is it a working day or a weekend, is it a day off …)
  • Weather information (temperature, pressure, is there sun, rain, or cloud …)
  • Event information (is it a day during Olympic games or during special event like football or rugby …)

In total, there are 66 other measures and dimensions, and I wonder if they have an influence on my bike hire activity. I want to try out whether including these influencers will improve my predictive forecasts. These measures and the number of bikes hired are recorded into a dataset.

Fig 5: Dataset with additional variables captured every day

Game 66: September 11 2015 The Initials Game Show

I create a predictive scenario in SAP Smart Predict based on the dataset of figure 5. Then I check if the predictive forecasts are more accurate and I also discover which of my additional variables have the greatest influence. I then save my predictive forecasts into a new dataset, and I link this dataset to my planning story to display the predictive forecasts of my bikes hired. So, let’s do this now.

The settings of this predictive scenario are almost the same as those of SAP Predictive Planning. The differences:

  • The data source which is now a dataset and
  • The field “Exclude As Influencer” set to exclude a variable correlated to the date which does not bring information. I keep all other variables.

Fig 6: Setting of the predictive scenario

Once trained, the accuracy of the predictive model (HW-MAPE) has a value of 10.66%, which is better than the 19.74% obtained before. The accuracy of the predictive forecasts has increased by 46%.

This time, there are two changes as shown below. The trend is more precise, and is influenced by some of these additional variables. I discover that the trend is influenced at 34.94% by the maximum temperature during the day (daymax). The trend is also influenced at 15.70% if a bike is hired during a weekend, or during a bank holiday. The same way, the bike hire is influenced at 10.17% if it rains.

Fig 7: Decomposition of the evolution of bike hired

This predictive model gives the forecasts shown below.

Fig 8: Predictive forecasts

The confidence interval is on average equals to 14,567. It is 37.5% less than in the first predictive model. This also confirm the added value of using influencers.

Now I save my predictive forecasts into a dataset named LondonBikeHire_Predictions.

Fig 9: Dataset containing the predictive forecasts

The last step consists of linking this dataset with the planning model in the planning story. For this I just add a linked model with the dataset LondonBikeHire_Predictions and link it on the time dimension to the planning model LondonBikeHire_Extended, as show below.

Fig 10: Link planning model to dataset

To focus the attention of the predictive forecasts and their comparison with actuals, I filter the time dimension on September 2015. The comparison is done with these calculated measures:

  • Delta (% no influencer) is the difference in percentage between predictive forecasts done via SAP Predictive Planning and actual values of the number of bikes hired. The average of this measure is 11.46%.
  • Delta (% with Influencers) is the difference in percentage between predictive forecasts done when context is used in the predictive model and actual values of the number of bikes hired. The average of this measure is 6.95%.

Fig 11: Planning story with actuals and predictive forecasts generated with influencers

What can we conclude? In this case, there are additional variables which have had a positive impact on the accuracy of the predictive model. The Horizon-Wide MAPE is much better (+46%) as well as the confidence interval (+37.5%). This can also be directly confirmed by the smaller gap between predictive forecasts and actual values (39.3% smaller). It is in the interest of the planner to keep in his planning story, the predictive forecasts from the predictive model that were calculated with influencers.

So, in certain cases, adding influencers might help refine the accuracy of the predictive forecast. If this happens with your use cases, you now have a way to bring this added value to your planning stories.

I hope these steps will help save you some time in the future. If you appreciated reading this, I would be grateful if you left a comment to that effect, and do not forget to like it as well. Thank you.

Resources about SAP Predictive Planning:

Game 66: September 11 2015 The Initials Games

  • Playlist of blogs about SAP Predictive Planning
  • Predictive Planning Presentation (3 min video)
  • Best Practices for SAP Analytics Cloud Predictive Planning (videos)